
Cleveland JavaScript Group

November 21, 2016

Thanks to

HOUSEKEEPING

Bathrooms

Food

No meetup in December

Vote for sessions on meetup.com

Call for presenters

Planet Proto

THE BASICS - OBJECTS

•Objects are maps/dictionaries of key-value pairs

•If that is true, then what is this?

THE BASICS - FUNCTIONS

• Functions are objects

• Because they are objects, arbitrary properties can
be assigned to them

USING PROTOTYPAL INHERITANCE
WALKING THE PROTOTYPE CHAIN

const person = {name: "Fred"};

const employee = Object.create(person);
employee.salary = 1000;

console.log(employee.name); // Fred
console.log(employee.salary); // 1000

THE PROTOTYPE CHAIN

__proto__

name ”Fred”

__proto__

salary 1000

employee

person

etc. etc. etc.
Object.prototype

PROTOTYPE FUNCTIONS

Object.create() Creates a new object with a specified prototype

Object.getPrototypeOf() Gets the specified object’s prototype (__proto__)

Object.setPrototypeOf() Sets an object’s prototype (after creation).
Caution: major performance hit (ES2015)

Object.prototype.isPrototypeOf() Checks whether an object exists in another object’s prototype chain

object instanceof constructor Tests whether constructor.prototype appears anywhere in object’s
prototype chain

const person = {name: "Fred"};

const employee = Object.create(person);
employee.salary = 1000;
employee.name = "Barney";

console.log(employee.name); // Barney
console.log(employee.salary); // 1000
console.log(person.name); // Fred

SETTING A PROPERTY (HIDING)

__proto__

name ”Fred”

__proto__

salary 1000

name ”Barney”

employee

person

etc. etc. etc.

Assignments do not search the prototype chain. Instead, they hide/mask properties
higher up in the prototype chain.

Object.prototype

SETTING UP PROTOTYPAL INHERITANCE

INVOKING A CONSTRUCTOR WITH NEW

Constructor functions are intended to be invoked using the new operator
(Hence the capital letter naming convention)

When a function is invoked using new, the following happens

1. A new object is created

2. The new object’s __proto__ is set to the constructor’s prototype
property

3. this is set to the new object

4. The function is invoked

const vehicleBase = {
numWheels: 4

};

function Car(numDoors) {
this.numDoors = numDoors;

}

Car.prototype = vehicleBase;

const myCar = new Car(2);
console.log(myCar.numWheels); // 4
console.log(myCar.numDoors); // 2

CONSTRUCTOR FUNCTION

__proto__

numWheels 4

__proto__

numDoors 2

myCar

vehicleBase

__proto__

prototype

Car

ASIDE: A WORD OF WARNING

Bad things can happen if you call a constructor and forget the “new” operator
To defend against this, do one of…

1. Use strict mode
(this will be undefined a TypeError will
be thrown)

2. Manually protect against it

function Car(numDoors) {
"use strict";
this.numDoors = numDoors;

}

function Car(numDoors) {
if (!(this instanceof Car))

return new Car(numDoors);

this.numDoors = numDoors;
}

PLANETPROTO WORKSHOPPER

Setup
npm install –g planetproto

Running
To select an exercise:
planetproto
To verify your solution:
planetproto verify mysolution.js

